#define _BSD_SOURCE #include <endian.h> uint16_t htobe16(uint16_t host_16bits); uint16_t htole16(uint16_t host_16bits); uint16_t be16toh(uint16_t big_endian_16bits); uint16_t le16toh(uint16_t little_endian_16bits); uint32_t htobe32(uint32_t host_32bits); uint32_t htole32(uint32_t host_32bits); uint32_t be32toh(uint32_t big_endian_32bits); uint32_t le32toh(uint32_t little_endian_32bits); uint64_t htobe64(uint64_t host_64bits); uint64_t htole64(uint64_t host_64bits); uint64_t be64toh(uint64_t big_endian_64bits); uint64_t le64toh(uint64_t little_endian_64bits);
The number, nn, in the name of each function indicates the size of integer handled by the function, either 16, 32, or 64 bits.
The functions with names of the form "htobenn" convert from host byte order to big-endian order.
The functions with names of the form "htolenn" convert from host byte order to little-endian order.
The functions with names of the form "benntoh" convert from big-endian order to host byte order.
The functions with names of the form "lenntoh" convert from little-endian order to host byte order.
The advantage of the byteorder(3) functions is that they are standard functions available on all Unix systems. On the other hand, the fact that they were designed for use in the context of TCP/IP means that they lack the 64-bit and little-endian variants described in this page.
$ ./a.out x.u32 = 0x44332211 htole32(x.u32) = 0x44332211 htobe32(x.u32) = 0x11223344
#include <endian.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> int main(int argc, char *argv[]) { union { uint32_t u32; uint8_t arr[4]; } x; x.arr[0] = 0x11; /* Lowest-address byte */ x.arr[1] = 0x22; x.arr[2] = 0x33; x.arr[3] = 0x44; /* Highest-address byte */ printf("x.u32 = 0x%x\n", x.u32); printf("htole32(x.u32) = 0x%x\n", htole32(x.u32)); printf("htobe32(x.u32) = 0x%x\n", htobe32(x.u32)); exit(EXIT_SUCCESS); }