This pragma works just like the "strict" pragma. This means that the scope of the warning pragma is limited to the enclosing block. It also means that the pragma setting will not leak across files (via "use", "require" or "do"). This allows authors to independently define the degree of warning checks that will be applied to their module.
By default, optional warnings are disabled, so any legacy code that doesn't attempt to control the warnings will work unchanged.
All warnings are enabled in a block by either of these:
use warnings; use warnings 'all';
Similarly all warnings are disabled in a block by either of these:
no warnings; no warnings 'all';
For example, consider the code below:
use warnings; my @a; { no warnings; my $b = @a[0]; } my $c = @a[0];
The code in the enclosing block has warnings enabled, but the inner block has them disabled. In this case that means the assignment to the scalar $c will trip the "Scalar value @a[0] better written as $a[0]" warning, but the assignment to the scalar $b will not.
As its name suggests, if your code tripped a mandatory warning, you would get a warning whether you wanted it or not. For example, the code below would always produce an "isn't numeric" warning about the ``2:''.
my $a = "2:" + 3;
With the introduction of lexical warnings, mandatory warnings now become default warnings. The difference is that although the previously mandatory warnings are still enabled by default, they can then be subsequently enabled or disabled with the lexical warning pragma. For example, in the code below, an "isn't numeric" warning will only be reported for the $a variable.
my $a = "2:" + 3; no warnings; my $b = "2:" + 3;
Note that neither the -w flag or the $^W can be used to disable/enable default warnings. They are still mandatory in this case.
Similarly, using $^W to either disable or enable blocks of code is fundamentally flawed. For a start, say you want to disable warnings in a block of code. You might expect this to be enough to do the trick:
{ local ($^W) = 0; my $a =+ 2; my $b; chop $b; }
When this code is run with the -w flag, a warning will be produced for the $a line --- "Reversed += operator".
The problem is that Perl has both compile-time and run-time warnings. To disable compile-time warnings you need to rewrite the code like this:
{ BEGIN { $^W = 0 } my $a =+ 2; my $b; chop $b; }
The other big problem with $^W is the way you can inadvertently change the warning setting in unexpected places in your code. For example, when the code below is run (without the -w flag), the second call to "doit" will trip a "Use of uninitialized value" warning, whereas the first will not.
sub doit { my $b; chop $b; } doit(); { local ($^W) = 1; doit() }
This is a side-effect of $^W being dynamically scoped.
Lexical warnings get around these limitations by allowing finer control over where warnings can or can't be tripped.
How Lexical Warnings interact with -w/$^W:
The combined effect of 3 & 4 is that it will allow code which uses the "warnings" pragma to control the warning behavior of $^W-type code (using a "local $^W=0") if it really wants to, but not vice-versa.
The current hierarchy is:
all -+ | +- closure | +- deprecated | +- exiting | +- glob | +- io -----------+ | | | +- closed | | | +- exec | | | +- layer | | | +- newline | | | +- pipe | | | +- unopened | +- misc | +- numeric | +- once | +- overflow | +- pack | +- portable | +- recursion | +- redefine | +- regexp | +- severe -------+ | | | +- debugging | | | +- inplace | | | +- internal | | | +- malloc | +- signal | +- substr | +- syntax -------+ | | | +- ambiguous | | | +- bareword | | | +- digit | | | +- parenthesis | | | +- precedence | | | +- printf | | | +- prototype | | | +- qw | | | +- reserved | | | +- semicolon | +- taint | +- threads | +- uninitialized | +- unpack | +- untie | +- utf8 | +- void
Just like the ``strict'' pragma any of these categories can be combined
use warnings qw(void redefine); no warnings qw(io syntax untie);
Also like the ``strict'' pragma, if there is more than one instance of the "warnings" pragma in a given scope the cumulative effect is additive.
use warnings qw(void); # only "void" warnings enabled ... use warnings qw(io); # only "void" & "io" warnings enabled ... no warnings qw(void); # only "io" warnings enabled
To determine which category a specific warning has been assigned to see perldiag.
Note: In Perl 5.6.1, the lexical warnings category ``deprecated'' was a sub-category of the ``syntax'' category. It is now a top-level category in its own right.
use warnings; time; { use warnings FATAL => qw(void); length "abc"; } join "", 1,2,3; print "done\n";
When run it produces this output
Useless use of time in void context at fatal line 3. Useless use of length in void context at fatal line 7.
The scope where "length" is used has escalated the "void" warnings category into a fatal error, so the program terminates immediately it encounters the warning.
To explicitly turn off a ``FATAL'' warning you just disable the warning it is associated with. So, for example, to disable the ``void'' warning in the example above, either of these will do the trick:
no warnings qw(void); no warnings FATAL => qw(void);
If you want to downgrade a warning that has been escalated into a fatal error back to a normal warning, you can use the ``NONFATAL'' keyword. For example, the code below will promote all warnings into fatal errors, except for those in the ``syntax'' category.
use warnings FATAL => 'all', NONFATAL => 'syntax';
Consider the module "MyMod::Abc" below.
package MyMod::Abc; use warnings::register; sub open { my $path = shift; if ($path !~ m#^/#) { warnings::warn("changing relative path to /var/abc") if warnings::enabled(); $path = "/var/abc/$path"; } } 1;
The call to "warnings::register" will create a new warnings category called ``MyMod::abc'', i.e. the new category name matches the current package name. The "open" function in the module will display a warning message if it gets given a relative path as a parameter. This warnings will only be displayed if the code that uses "MyMod::Abc" has actually enabled them with the "warnings" pragma like below.
use MyMod::Abc; use warnings 'MyMod::Abc'; ... abc::open("../fred.txt");
It is also possible to test whether the pre-defined warnings categories are set in the calling module with the "warnings::enabled" function. Consider this snippet of code:
package MyMod::Abc; sub open { warnings::warnif("deprecated", "open is deprecated, use new instead"); new(@_); } sub new ... 1;
The function "open" has been deprecated, so code has been included to display a warning message whenever the calling module has (at least) the ``deprecated'' warnings category enabled. Something like this, say.
use warnings 'deprecated'; use MyMod::Abc; ... MyMod::Abc::open($filename);
Either the "warnings::warn" or "warnings::warnif" function should be used to actually display the warnings message. This is because they can make use of the feature that allows warnings to be escalated into fatal errors. So in this case
use MyMod::Abc; use warnings FATAL => 'MyMod::Abc'; ... MyMod::Abc::open('../fred.txt');
the "warnings::warnif" function will detect this and die after displaying the warning message.
The three warnings functions, "warnings::warn", "warnings::warnif" and "warnings::enabled" can optionally take an object reference in place of a category name. In this case the functions will use the class name of the object as the warnings category.
Consider this example:
package Original; no warnings; use warnings::register; sub new { my $class = shift; bless [], $class; } sub check { my $self = shift; my $value = shift; if ($value % 2 && warnings::enabled($self)) { warnings::warn($self, "Odd numbers are unsafe") } } sub doit { my $self = shift; my $value = shift; $self->check($value); # ... } 1; package Derived; use warnings::register; use Original; our @ISA = qw( Original ); sub new { my $class = shift; bless [], $class; } 1;
The code below makes use of both modules, but it only enables warnings from "Derived".
use Original; use Derived; use warnings 'Derived'; my $a = Original->new(); $a->doit(1); my $b = Derived->new(); $a->doit(1);
When this code is run only the "Derived" object, $b, will generate a warning.
Odd numbers are unsafe at main.pl line 7
Notice also that the warning is reported at the line where the object is first used.